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The most commonly used method of calculating the chemical potential in quantum statistical mechanics is
based on an idea originally due to Sommerfeld, applicable to a Fermi system. An alternative approach is
presented that relies on the extensivity property of the energy on an isentrope. A simple equivalence is
demonstrated through the ideal gas models given in the polylogarithm formulation. Unlike the Sommerfeld
approach this approach is also applicable to a Bose system.@S1063-651X~96!10305-6#

PACS number~s!: 05.30.2d

I. INTRODUCTION

In modern statistical mechanics the chemical potentialm
is a fundamental quantity characterizing many-particle sys-
tems in thermal equilibrium@1#. For the ideal Fermi gas in
the ground state, the chemical potential is the same as the
Fermi energy. For a semiconductor or an insulator it lies
halfway in a gap between the valence and conduction bands.
For the ideal Bose gas the vanishing of the chemical poten-
tial signals the onset of Bose condensation. For a thermal
photon gas the chemical potential is zero since the numbers
are not conserved. That is, these photons are in a state of
coexistence at all temperatures. For liquid4He atT50 K, the
chemical potential is the same as the ground state binding
energy~27.16 K!, which is equal in magnitude to the latent
heat of vaporization.

From the second law of thermodynamicsdU5TdS
2PdV1mdN ~the symbols have the usual meaning!, one
obtains at oncemGD5(]U/]N)S,V , where we have inserted
the subscript GD for Gibbs-Duhem for reasons that will be-
come apparent shortly. Thus the chemical potential is a mea-
sure of the extensivity property of the energy on an isentrope
when the volumeV is also fixed. This particular constraint
makes the determination of the chemical potential from the
energy nontrivial except perhaps in the ground state where
the entropy is zero. If a system is not in the ground state, one
needs to separately determine an isentropic path on which
the energy varies with the number of particlesN ~or with the
density if the volume is fixed!. The sign on the chemical
potential is a consequence of this constraint imposed by the
second law. We shall term it the Gibbs-Duhem approach
when the chemical potential is obtained in this manner on an
isentrope.

In the Gibbs-Duhem approach we are already thinking of
a system whose volume is fixed but number is not. It is just
the condition on which a grand ensemble is constructed in
statistical mechanics. In grand ensemble theory the density
~more accurately the reduced density! is expressible as a
function of the fugacityz5expbm, whereb51/kT, k the
Boltzmann constant. Thus by inversion the fugacity or the
chemical potential is obtainable. One might term this process
of obtaining the chemical potential the Sommerfeld ap-
proach, most widely used in quantum statistical mechanics of
Fermi particles@1#. In the Sommerfeld approach one is in
effect on an isotherm. Hence, it is thermodynamically very

different from the Gibbs-Duhem approach.
The purpose of this paper is to show that the Gibbs-

Duhem approach, although seldom used in quantum statisti-
cal mechanics, can yield the chemical potential nearly as
directly for the ideal Fermi system as the Sommerfeld ap-
proach. It is perhaps more insightful thermodynamically as it
utilizes almost all the main statistical thermodynamics results
obtained by grand ensemble theory. In addition, the Gibbs-
Duhem approach can directly yield the chemical potential for
the ideal Bose system, also near the transition temperature.
Standard ways of obtaining it are somewhat indirect, requir-
ing an artificial function@6#. The Sommerfeld approach, of
course, ceases to be applicable for a Bose system at low
temperatures.

II. STATISTICAL THERMODYNAMICS OF IDEAL
PARTICLES AND POLYLOGARITHMS

It was shown recently that the statistical thermodynamics
of ideal particles given by grand ensemble theory is simply
unifiable@2#. If r[N/V is the number density of an ideal gas
in d dimensions andl the thermal wavelength, then the re-
duced density is expressible as follows:

rld5sgn~z!Li d/2~z!, z5H z if Bose

2z if Fermi,
~1!

wherez5expbm is the fugacity andLi d/2(z) is the polylog
of order d/2. The physically allowed domain ranges from
z52` to 1, whereupon the polylog is also real. A useful
integral representation of the polylog of orderm11 in s is
@2#

Lim11~s!5
1

G~m11!
E
0

s

~a2 lnt !m
dt

12t
, a5 lns, ~2!

wheresmay be a complex number.
From ~2! one can deduce a recurrence relation

sd/ds Lim11(s)5Lim(s) as well as asymptotic forms
Lim(s→0)5s andLim(s→2`)52~ln2s)m/G(m11).

All the important thermodynamic functions can be ex-
pressed in polylogs through their relationship to the density.
For example,

b21rP5Li d/211~z!/Li d/2~z![ f 1~z!, ~3!
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bU/N5~d/2! f 1~z!, ~4!

S/Nk5~d/211! f 1~z!2 lnuzu. ~5!

The above~3!–~5! stand as unified expressions of these ther-
modynamic functions at anyT, d, and statistics. Their exist-
ence is critical to the applicability of the Gibbs-Duhem ap-
proach.

III. GIBBS-DUHEM APPROACH

Since the volume is held constant throughout, it will not
be indicated explicitly henceforth. We shall show by~3!–~5!
that whether the statistics is Fermi, Bose, or classical,

mGD[]~U/V!/]ruS5m, ~6!

where by the right-hand side of~6! we shall mean the chemi-
cal potential obtained by the Sommerfeld approach. Al-
though possible to do so generally, it is simpler—perhaps
more revealing—to show it separately according to the sta-
tistics. In the Gibbs-Duhem approach there are two isentro-
pic relationshipsA andB, through which the chemical poten-
tial is expressed. They are defined below:

A5] lnb/] lnruS , ~7a!

B5] lnz/] lnruS , ~7b!

which evidently depend onz through~1! and ~5!, hence on
the statistics.

The classical gas is given by the conditionz→60, hence
Li d/2(z)5z. See after~2!. That is, the polylog acts self-
similarly, which explains why the classical properties are
generally d independent. IfLi d/2(z)5z, f 1(z)51. Hence
from ~4!, we obtain

mGD5~d/2!b21~12A!. ~8!

From the reduced density~1!,

11~d/2!A5B. ~9!

From the entropy~5!,

B5d/2112 lnz. ~10!

Hence, by~9! and ~10!,

mGD5b21lnz5b21lnrld, ~11!

where for the final step we have used~1!. We recognize the
above at once as the classical result. In the classical regime,
A;B→2lnz, z→0.

For the classical gas, if~1! and ~4! are combined,

U/N5~d/2!ar2/de2~d/2!lnz, ~12!

wherea is defined byl5(ab)1/2. Now by ~5!,

U/N5~d/2!ar2/ded/2$S/Nk2~d/211!%. ~13!

The above is exactly the energy obtained by microcanonical
ensemble theory after resolving the Gibbs paradox of mix-
ing. See p. 27 of Ref.@1#. Now the chemical potential can

also be directly obtained by differentiation on an isentrope,
which was perhaps the original way of calculating it. At low
temperatures it is of course not possible to express the energy
in the form of ~13! since the energy depends on the entropy
very weakly if at all.

Now let us turn to the Fermi gas near the ground state,
i.e.,z→`. If z→`, there is an asymptotic expression for the
polylog. See also~2!. Hence we obtain

U/V5
rb21lnz

112/d
1••• . ~14!

To this order, by~6!,

mGD5
b21lnz

112/d
$12A1B/ lnz%. ~15!

Now from ~1!, replacing the polylog therein with its asymp-
totic form, we obtain

11~d/2!A5~d/2!B/ lnz, ~16!

which may be compared with the classical relation~9!.
By substituting~16! in ~15!, we finally obtain

mGD5b21lnz ~17a!

52b21Li d/2
21~2rld!

5b21@G~d/211!rld#2/d1••• , ~17b!

where we have introduced the inverse polylog. Ifd53, ~17b!
is precisely the result first given by Sommerfeld@1#, and later
more generally by others@3–5#. From the entropy~5!, we
obtainB5 lnz, z→`, hence by~16! A5122/d. A is a con-
stant whileB is divergent in the ground state, different from
the classical behavior, whereA andB are both divergent as
2lnz, z→0.

Finally we shall turn to the ideal Bose gas, for which the
Gibbs-Duhem approach is especially useful. Recall that the
Sommerfeld approach is not applicable here. Most interest-
ing is the behavior nearz51, where the polylog has a branch
point, depending sensitively on its order, i.e., the dimension-
ality d @2#. It is thus necessary to begin the analysis exactly.
By ~4! and ~6!,

mGD5~d/2!b21f 1@12A1~ f 1
212 f 0

21!B#, ~18!

where f 05Li d/2(z)/Li d/221(z) and f 1 defined in~3!. In de-
riving this we have used] f 1/]z5z21(12 f 1/ f 0), obtained
by the aid of the recurrence relation. See after~2!. Now from
the reduced density~1!,

11~d/2!A5 f 0
21B. ~19!

Also from the entropy~5!,

f 0
21B5

lnz2~d/211! f 1
~d/211!~ f 02 f 1!2 f 0

. ~20!

The substitution of~19! and ~20! in ~18! directly yields the
desired identity

mGD5b21lnz. ~21!
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If z→1, the polylog of orderd/2 has a finite value if
d53,5,... @2#. That is,

Li d/2~z→1!.G~2d/211!~2 lnz!d/2211Z~d/2!, ~22!

where Z(d/2) is the Riemann zeta function, i.e.,
Li d/2(z51)5Z(d/2)5rl c

d by ~1!. Hence, ifz→1,

lnz52@~rld2rlc
d!/G~2d/211!#2/~d22!. ~23!

By substituting~23! in ~21!, we obtain the chemical potential
asl→lc ~i.e., T→Tc!

mGD52b21F Z~d/2!

G~2d/211!
@12~l/lc!

d#G2/~d22!

, l<lc .

~24!

If d53, we recover the known result, but obtained somewhat
indirectly @6#. BothA andB vanish as2~2lnz!1/2, z→1.

If d51 or 2, the polylog is divergent asz→1, i.e.,

Li 1/2~z→1!;G~1/2!~2 lnz!21/2, ~25!

Li 1~z→1!;2 ln~2 lnz!. ~26!

Hence there are no finite critical temperatures in these di-
mensions, as is well known@1#. Finally the expression~21!
being exact may be used to recover the previous results~11!
and ~15! by taking thez→0 and` limits in the polylog,
respectively.

IV. DISCUSSION

We have shown that for a Fermi system the Gibbs-Duhem
approach yields the chemical potential quite equivalently to
the more commonly used Sommerfeld approach. For a Bose
system the Gibbs-Duhem approach also yields the chemical
potential readily. Since this approach refers to the extensivity
property of the energy on an isentrope, it can give added
insight into thermodynamic behavior through the two quan-
tities A5] lnb/] lnruS and B5] lnz/] lnruS . The depen-
dence of the chemical potential on statistics or temperature,
or even the sign itself, is determined by howA andB both
behave in different regions of the fugacity. For the Fermi gas
near its ground state,A is a constant butB diverges asz→`.
For the Bose gas near the transition temperature, bothA and
B vanish asz→1 if d53. In the classical regime, they in-
stead diverge asz→0.

Independent of the chemical potential, the isentropic be-
havior of thermodynamic quantities, such as the temperature
and fugacity, is itself interesting, especially compared with
the isothermal behavior. Finally, as an aside, we have shown
that the classical energy obtained in a grand ensemble can be
put into a well-known form given by microcanonical en-
semble theory. One cannot expect the same at low tempera-
tures where a microcanonical ensemble would prove inad-
equate.
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